Skip to contents

This vignette demonstrates how exploratory functions like show_in_excel(), which_na() and which_this() can be used.

Examples

df = iris

Show a data frame in MS Excel

It can also be used with pipes.

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
df %>% 
   show_in_excel()

Which values are missing?

I’m initialising a vector from 1 to 10 with fifth value as missing NA.

x = c(1:4, NA, 6:10)

Using which_na(), I can find index of element in the vector which is NA.

which_na(x)
#> [1] 5

Which element is this?

It can identify values that satisfy a criteria. It is kind of a wrapper around dplyr’s filter().

which_this(iris, "Sepal.Length > 7")
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
#> 1           7.1         3.0          5.9         2.1 virginica
#> 2           7.6         3.0          6.6         2.1 virginica
#> 3           7.3         2.9          6.3         1.8 virginica
#> 4           7.2         3.6          6.1         2.5 virginica
#> 5           7.7         3.8          6.7         2.2 virginica
#> 6           7.7         2.6          6.9         2.3 virginica
#> 7           7.7         2.8          6.7         2.0 virginica
#> 8           7.2         3.2          6.0         1.8 virginica
#> 9           7.2         3.0          5.8         1.6 virginica
#> 10          7.4         2.8          6.1         1.9 virginica
#> 11          7.9         3.8          6.4         2.0 virginica
#> 12          7.7         3.0          6.1         2.3 virginica